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a b s t r a c t

d-Mannitol is known to exist in five solid-state forms, a hemihydrate, an amorphous form and three
polymorphic forms (I◦, II and III), which tend to crystallize concomitantly. Therefore, a fast and simple
method for the simultaneous quantification of these polymorphs in powder mixtures was developed
on the basis of FT-Raman spectroscopic data, partial least-squares (PLS) regression and artificial neural
networks (ANNs). A combination of the first derivative and orthogonal signal correction (OSC) was found
to be the optimal data pretreatment that significantly increased the predictive performance of the models.
The RMSEPs (root-mean-squared errors of prediction) obtained by PLS for the modifications (mods.) I◦,
T-Raman spectroscopy
-Mannitol
rystal polymorphism
ultivariate calibration

LS regression
rtificial neural networks

II and III were 0.44%, 0.34% and 0.36% respectively. The estimated limits of detection are ∼0.5% (mod.
I◦) and <1% (mods. II and III). The ANNs model yielded slightly higher RMSEP values of 0.51%, 0.39%
and 0.41%. In contrast to related previous studies, calibration was performed with carefully prepared
ternary mixtures of all polymorphs, which is one of the reasons for the high precision and accuracy of
the presented multivariate models.

© 2009 Elsevier B.V. All rights reserved.

hemometry
uantitative analysis

. Introduction

In many scientific disciplines multivariate statistical methods
ave gained importance for analyzing, evaluating and understand-

ng huge data sets, consisting of numerous variables (Forina et al.,
007). Among the many subtopics and applications of multivari-
te extraction of information from chemical data (chemometrics)
Lavine and Workman, 2006) the development of quantitative
ssays based on multivariate calibration models and spectroscopic
echniques is one of the most common applications in pharma-
eutical and chemical disciplines. The majority of analytical tasks
learly concern problems related to diverse chemical entities (e.g.
mpurities). However, there is an increasing number of applications

hat focus on solid-state problems (Aaltonen et al., 2008), such as
he analysis of solid-state forms (polymorphs, hydrates, solvates,
morphous form) of the pure active pharmaceutical ingredient in
owder mixtures or formulations (Aboul-Enein et al., 2002; Dandeu

∗ Corresponding author at: Institute of Pharmacy/Pharmaceutical Technology,
niversity of Innsbruck, Innrain 52, 6020 Innsbruck, Austria. Tel.: +43 512 507 5309;

ax: +43 512 507 2939.
E-mail address: ulrich.griesser@uibk.ac.at (U.J. Griesser).

378-5173/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2009.10.019
et al., 2006; Heinz et al., 2007; Kachrimanis et al., 2007; Kipouros
et al., 2005, 2006; Mazurek and Szostak, 2008; McGoverin et al.,
2006; Pratiwi et al., 2002; Poellaenen et al., 2005; Strachan et al.,
2004; Suda et al., 2008).

Powder X-ray diffraction (PXRD) and spectroscopy (IR and
Raman) are the most commonly applied techniques for the iden-
tification and characterization of solid-state forms. PXRD is the
gold standard for this task, since true polymorphs must exhibit
structural differences (exactly the same chemical composition but
differences in crystal packing). However, the most critical lim-
itation for quantitative assays is the possible variability of the
peak intensities due to preferred orientation of the crystals. There-
fore, special sample preparation is required (Jenkins and Snyder,
1996). Spectroscopic methods (IR, Raman, solid-state NMR) are
highly sensitive to changes in the short-range interactions of the
molecular assemblies in different polymorphs and this makes
them an ideal complement to PXRD (Auer et al., 2003). Infrared
spectroscopy, particularly near infrared (NIR), is the dominating

analytical technique for such applications. However, one can rec-
ognize an increasing preference for Raman spectroscopy, which
is obvious from the rising number of publications reporting the
use of this method. Apart from the vast technical advancement
of Raman spectrometers this trend can be attributed to the fact

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:ulrich.griesser@uibk.ac.at
dx.doi.org/10.1016/j.ijpharm.2009.10.019
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hat Raman spectroscopy offers a variety of advantages compared
o other spectroscopic techniques. One benefit is the convenience
n sample preparation, which enables recording Raman spectra
uring ongoing chemical processes, in or through closed reaction
essels. Furthermore, unlike with NIR spectroscopy, the method is
ot sensitive to particle size variations, and Raman spectra pro-
ide more spectral information (higher number of bands and much
harper bands) than NIR spectra. Thus, the information content
ne can exploit with univariate or multivariate methods can be
ignificantly higher compared to NIR spectroscopy.

Though there are virtually no crystal forms, which cannot be
istinguished by Raman spectroscopy (Auer et al., 2003) the differ-
nces of Raman spectra can be subtle. Therefore, the development
f quantitative assays, based on conventional univariate (peak
eight/area) calibration methods, may fail. Consequently, the appli-
ation of more complex multivariate methods, which allow an
valuation of the smallest reproducibly measurable differences, is
equired. Univariate methods very often fail when a higher num-
er of polymorphs (three or more) are quantified simultaneously.
ecause of the fact that multivariate algorithms such as PLS (par-
ial least-squares) regression, ANNs (artificial neural networks),
VMs (support vector machines) and others are capable to deal
ith many thousand variables, they can be employed for these

asks. Moreover, multivariate methods can improve the accuracy
f a quantification method since the variation (wavenumber shifts,
ntensity) over the entire spectral range is considered and not only
he intensity of selected bands (Anderton, 2003 and refs. therein).
hus, the high reproducibility of Raman spectra combined with a
ophisticated multivariate algorithm is a promising basis for the
evelopment of a successful quantitative model, even for rather
omplex mixtures.

The usefulness and power of the PLS method (Martens and
aes, 1991) in the spectroscopic quantification of polymorphic
owder mixtures was demonstrated in numerous applications.
or example, Poellaenen et al. (2005) quantitatively character-
zed the polymorphic composition of sulfathiaziole, McGoverin
t al. (2006) quantified binary polymorphic mixtures of raniti-
ine hydrochloride using NIR spectroscopy, and Kachrimanis et
l. (2007) recently quantified paracetamol polymorphs in powder
ixtures by FT-Raman spectroscopy and PLS regression. ANNs have

een successfully applied for cases where no linearity between
he input variable and the determined properties exist (Despagne
nd Massart, 1998). The prediction power of different multivari-
te calibration methods (including PLS and ANNs) in the analysis of
olymorph mixtures was demonstrated by Kipouros et al. (2006).
his study aimed at the quantification of three different crystal
orms of carbamazepine in powder mixtures based on data that
ere obtained with diffuse reflectance FTIR spectroscopy (DRIFTS).

In order to enhance the predictive power of a multivariate cal-
bration model it is important to establish the best model and the
est methodology for the raw data pretreatment. The purpose of
preprocessing is to remove any variation in the input data, not

elated to the concentration of a particular given component (Wold
t al., 1998). Commonly used spectral preprocessing methods are
ultiplicative scatter correction (MSC) (Geladi et al., 1985), stan-

ard normal variate (SNV) transformation (Barnes et al., 1989), first
nd second order derivative and orthogonal signal correction (OSC)
Wold et al., 1998; Eriksson et al., 2001). Furthermore, all these
reprocessing methods can be applied alone or in combination.

Our aim was to develop a suitable quantitative model for ternary
ixtures of d-mannitol polymorphs. This task emerged in connec-
ion with a project that aimed at the production and evaluation
f spray-dried d-mannitol as carrier (alternative to lactose) for
ulmonary administered drugs. Depending on the spray drying
arameters, especially on the drying temperature, different mor-
hologies of the spray-dried products were obtained, allowing
Pharmaceutics 385 (2010) 29–36

the tailoring of interparticle interactions between the carrier and
the drug in ordered mixtures and the performance of the dry
powder inhalate. Hot-stage microscopy revealed that a low dry-
ing temperature (60 ◦C) favors the crystallization of d-mannitol
from a supersaturated solution, whereas at high temperature
(120 ◦C) a largely water free melt is formed that crystallizes spon-
taneously, when the temperature drops to about 90 ◦C. As different
polymorphs may be obtained, depending on the rate of solvent
evaporation and the cooling rate of d-mannitol solutions or the
melt, we were interested in analyzing the phase composition of
the spray-dried products.

Due to its safety and its compatibility with other drugs (Kibbe,
2000) d-mannitol is one of the most important excipients in phar-
maceutical and food industries, where it is used as sugar substitute,
as additive in tablets, capsule formulations and granules, for par-
enteral formulations, etc. The characterization of the solid-state
behavior of d-mannitol has been the topic of many studies. Burger
et al. (2000) summarized past literature and performed a com-
prehensive study on the solid-state properties of the polymorphs
including their powder compaction properties and thermodynamic
stability. Here the nomenclature of Burger et al. (2000) will be
used, following the order of decreasing melting points. Modifica-
tion (mod.) I◦ is additionally marked with a superscript zero to
indicate that this is the thermodynamically stable polymorph at
room temperature. The mods. I◦ (beta form) and II (alpha form) are
energetically very similar and enantiotropically related to mod. III
(delta form), which is the least stable form at and above room tem-
perature. Mod. III (Tfus = 155 ◦C) melts about 10 K below the melting
point of the two other forms (Tfus = 166 ◦C). A specific feature of this
polymorphic system is the high kinetic stability of the metastable
forms (mods. III and II). In fact, we observed that samples of these
forms that have been kept in our storage for far more than 10
years showed virtually no change. Another feature of the three
d-mannitol polymorphs is their propensity to crystallize concomi-
tantly. This makes the production of the phase pure polymorphs
rather challenging. Commercial products mostly consist of mod. I◦,
but they may also be composed of mainly mod. III or mixtures of
these two forms. Lian Yu and coworkers (Yu, 2007 and refs. therein)
gave an insight into the complex crystallization behavior of the d-
mannitol polymorphs. The same authors (Yu et al., 1999) detected
also the hemihydrate of d-mannitol, which occurs in freeze-drying
processes. Due to its low stability the hydrate transforms on warm-
ing to a mixture of the mods. I◦ and III. The crystal structure of the
hemihydrate and details on the solid-state behavior were reported
by Nunes et al. (2004). Fronczek et al. (2003) discussed and com-
pared the structural features of the three d-mannitol polymorphs.

The fact that d-mannitol occurs mostly as a mixture of sta-
ble polymorphs naturally encouraged many groups to develop
quantification methods. Table 1 summarizes quantitative or semi-
quantitative studies of d-mannitol forms published in the litera-
ture. Campbell Roberts et al. applied univariate methods to analyze
binary mixtures of the mods. I◦ and III with either FT-Raman spec-
troscopy (Campbell Roberts et al., 2002a) or X-ray powder diffrac-
tomerty (Campbell Roberts et al., 2002b). A multivariate calibration
method using PLS and Raman spectroscopy was applied by Auer et
al. (2003) to analyze mixtures of these two forms (I◦ and III). Raman
spectroscopy was also used by Xie et al. (2008), who developed a
multivariate curve resolution (MCR) method for the quantitative
analysis of the three d-mannitol polymorphs, the hemihydrate and
the amorphous form in lyophilized protein formulations. In this
study the second derivative of the spectra was used, and the perfor-

mance of the calibration model was evaluated with binary mixtures
of the mods. I◦ and III and the prediction residue. Not based on
standard reference mixtures are the studies reported by Vehring
(2005) and Beattie et al. (2007). Vehring (2005) identified and mea-
sured the mass fractions of d-mannitol in spray-dried mixtures
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Table 1
List of reports on (semi-)quantitative studies of d-mannitol solid-state forms.

Author Year Technique Quantification method Quantified forms Aims/results

Campbell Roberts et al. 2001a Raman UV (peak intensity ratios) I◦ and III • Quantitation of mod. I◦ in binary
mannitol mixtures
• Levels down to ∼2% can be quantified

Campbell Roberts et al. 2001b PXRD UV (peak area) I◦ and III • Quantification of mod. III in binary
mannitol mixtures
• LOD: 1%, LOQ: 3%

Auer et al. 2003 Raman MV (PLS) I◦ and III • Quantitative analysis of mannitol
mods. I◦ and III
• S.E. of CV: 1.039%

Vehring 2005 Raman UV (deconvolution) Calictonin/mannitol (I◦ ,
II, III, amorph.)

• Identification/mass fraction
measurement of mannitol (I◦ , II, III,
amorphous) in spray-dried salmon
calcitonin mixtures
• Absolute error of measured mass
fraction calcitonin/mannitol: <3%
(0–100% range)
• Relative error of measured mass
fraction calcitonin/mannitol: 10%
(5–10% range).

Beattie et al. 2007 Raman MV (LCE) (I◦ , II, III, hydrate,
amorph.)

• Semi-quantitative determination of
all mannitol forms in frozen system
• Determination of the predominant
form

Xie et al. 2008 Raman MV (MCR) I◦ , II, III, hydrate,
amorph.

• Characterize/quantify the five known
mannitol forms in lyophilized protein
formulations
• Quantitation based on binary
mixtures of mods. I◦ and III combined
with evaluation of the prediction
residue
• LOQ: 5%

This study Raman MV (PLS and ANNs) I◦ , II and III • Simultaneous quantification of
ternary polymorphic powder mixtures
• LOD: ∼1.5% (I◦) and <1% (II and III)
• RMSECV (PLS): <0.5% for all three
forms
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V: univariate; MV: multivariate; PLS: partial least-squares regression; LCE: linear co
etworks; LOD: limit of detection; LOQ: limit of quantitation; S.E.: standard error; C

ith salmon calcitonin. The d-mannitol fractions consisted of mix-
ures of the three polymorphs and the amorphous phase. Beattie et
l. (2007) published a semi-quantitative calibration method, based
n a linear combination of element (LCE) analysis and involving
ll five solid-state forms, along with the crystallization behavior
f frozen d-mannitol samples. However, there has been no study
nvolving all three polymorphs in a calibration set.

Therefore, the aim of the present study was to develop a FT-
aman method for the simultaneous quantification of ternary
owder mixtures of d-mannitol polymorphs on the basis of stan-
ard reference mixtures. Furthermore, the predictability power of
ifferent multivariate calibration algorithms, namely PLS and ANNs
hould be compared. Since the hemihydrate (Yu et al., 1999) is not
table under common storage conditions, only the threed-mannitol
olymorphs were considered in this study. It was anticipated that
he preparation of mixtures is simple, since the modifications do
ot undergo phase changes upon grinding and mixing.

. Materials and methods

.1. Preparation of pure d-mannitol polymorphs
The commercial d-mannitol product (Apoka ACM, Austria), con-
isting of pure mod. I◦, was used for the quantification. Mod. II was
repared by dissolving 50 g d-mannitol in 450 g 70% EtOH under
eating. The hot, but not saturated solution was slowly cooled to
• RMSEP (PLS): <0.5% for all three forms

tion of element analysis; MCR: multivariate curve resolution; ANNs: artificial neural
ss-validation; RMSECV/P: root-mean-squared error of cross-validation/prediction.

room temperature. After 8 h, needles of pure mod. II precipitated,
which were filtered off and dried at 40 ◦C. Mod. III was produced
according to the instructions of Burger et al. (2000) by rapidly cool-
ing a hot saturated solution in water to 0 ◦C in an ice bath.

2.2. Preparation of polymorphic mixtures

Three groups, each containing eleven ternary mixtures, were
prepared by geometrically mixing a starting mixture (36:32:32)
with either a pure form or a second mixture, resulting in follow-
ing mass ratios—36:32:32, 52:24:24, 68:16:16, 76:12:12, 84:8:8,
88:6:6, 92:4:4, 96:2:2, 97:1.5:1.5, 98:1:1 and 99:0.5:0.5 for each
polymorph. Including the three pure polymorphs (mods. I◦, II and
III), a set of 36 different samples was obtained.

Before mixing the calibration and validation sets the pure poly-
morphs were milled in a cross-beater mill (Primax, Troisdorf,
Germany) and particles >300 �m were removed by sieving the
powder. The homogenization procedure showed that especially
mod. II is very electrostatic, which complicated the preparation of
the mixtures. Equal amounts (w/w) of the polymorphs or poly-
morph mixtures were weighed and mixed in a mortar using a

pestle or a spatula, until a homogenous blend was obtained. The
homogeneity of the mixtures was controlled with FT-Raman spec-
troscopy, in 5 min intervals until identical Raman spectra were
obtained (minimum mixing time: 15–20 min). For every mixture
an amount of at least 1000 mg was prepared.



3 rnal of Pharmaceutics 385 (2010) 29–36

2

t
s
p
t
s
a
b
a
s
4

2

R
l
c
g
a
f
B
m
t
p

2

f
t
(
p
1
(
F
t
s
c

t
d
p
o
T
a
g
t
s
i
T
t
d
s
K
s
I
i
F

2

T

2 D.E. Braun et al. / International Jou

.3. X-ray powder diffraction (PXRD)

The diffractograms were obtained with an X’Pert PRO diffrac-
ometer (PANalytical, Almelo, The Netherlands) with the following
etup: theta/theta coupled goniometer, transmission geometry,
rogrammable XYZ stage with well plate holder, Cu-K�1,2 radia-
ion (wavelength 0.15419 nm), focussing mirror, 0.5◦ divergence
lit and 0.02◦ Soller slit collimator on the incident beam side, 2 mm
ntiscattering slit and 0.02◦ Soller slit collimator on the diffracted
eam side, solid-state PIXcel detector. The patterns were recorded
t a tube voltage of 40 kV, tube current of 40 mA, applying a step
ize of 2� = 0.013◦ with 40 s per step in the 2� range between 2◦ and
0◦.

.4. FT-Raman spectroscopy

FT-Raman spectra were recorded with a Bruker RFS 100 FT-
aman spectrometer, equipped with a diode pumped Nd:YAG

aser (1064 nm) as the excitation source, and a liquid nitrogen
ooled, high sensitivity Ge detector (Bruker Optik GmbH, Ettlin-
en, Germany). A few milligrams of the samples were packed into
luminum sample cups. For each spectrum 128 scans were per-
ormed at a resolution of 4 cm−1 over the range 30–4000 cm−1. A
lackman-Harris B4 term was used as apodization function. Raman
easurements of the mixtures were repeated five times to exclude

he effect of imperfect mixing and guarantee a representative sam-
ling of the mixtures.

.5. Data preprocessing

In a first step the whole spectral range (4000–30 cm−1) was used
or the multivariate calibration. The raw spectra were normalized to
he strongest peak (886–874 cm−1) using the Bruker Opus software
version 5.5), in order to remove inhomogeneities due to sample
reparation. Different preprocessing algorithms, SNV (Barnes et al.,
989), MSC (Geladi et al., 1985), first and second derivative, and OSC
Wold et al., 1998) were either applied alone or in combination.
or all preprocessing steps, except the calculation of the deriva-
ives (calculated with the Bruker Opus software), the Simca-P11.0
oftware (Umetrics AB) was used. To evaluate the best models,
ross-validation by the leave-one-out method was applied.

OSC is a PLS based method and removes from the X-data varia-
ion which is not related to the concentration (in general output
ata) (Wold et al., 1998). For each fitted model two OSC com-
onents were calculated. To minimize the observation risk of
ver-fitting two spectral regions were excluded from the dataset.
he first of these concerns a part of the region of the symmetric
nd antisymmetric stretch vibrations of the R–CH2–R′ and CH(R)3
roups (2947–2939 cm−1), the second the broad range from 951
o 777 cm−1, which includes, among others, the in-phase C–C–O
tretch vibrations of the OH groups. Furthermore, the region start-
ng at 89 cm−1 (primary beam of the laser) to 30 cm−1 was excluded.
he final dataset comprised 1932 X variables (wavenumbers), and
hree Y variables (the concentration of each polymorph). This
ataset was then split into a training/calibration and test/validation
ubset, containing 24 and 12 samples respectively, applying the
ennard–Stone design (Kennard and Stone, 1969). The validation
ubset contained following mixtures: I36, I76, I99, I100, II36, II84,
I96, II98, III52, III88, III97, III99 (concentration of the dominat-
ng polymorph given), also illustrated in the triangular diagram in
ig. 1.
.6. Model fitting and validation

PLS regression was performed with the Simca-P11.0 software.
he optimal number of PLS components was automatically deter-
Fig. 1. Triangular diagram presenting the partitioning of input data into train-
ing/calibration (empty symbols) and test/prediction subset (filled symbols).

mined by the leave-one-out cross-validation (CV) procedure (Wold,
1978). In each calibration model a single model was developed for
the three modifications.

Furthermore, artificial neural networks (ANNs) of the feed-
forward architecture were fitted to the training subset (1932 input
units, 1000 hidden units and three output units). Each input unit
represented the preprocessed Raman unit value (wavenumber)
and the output units the concentration. In all cases the logis-
tic sigmoid transfer function was used for the input to hidden
layer connections, and the linear function was used for the hid-
den layer to output connections. The networks were trained using
the scaled conjugate gradient method. Training was repeated five
times and the averaged concentrations were used. The netlab tool-
box (Nabney, 2001) for matlab was employed for the calculation
of the ANNs. All calculations were performed on a PC running MS
Windows XP, equipped with an AMD Turion64 2 GHz processor
and 2 GB RAM.

The predictive performance was assessed on the basis of the
root-mean-squared error of cross-validation (RMSECV), calibration
(RMSEC) and prediction (RMSEP), calculated by Eq. (1).

RMSE =
√∑n

i=1(yi − ȳi)
2

n
(1)

The limit of detection (LOD) of the polymorphs in the ternary mix-
tures was calculated from the standard deviation (SD) of samples
containing the analyte in the range of the LOD (0–2%) and the slope
of the linear regression of the actual versus predicted concentration
plot, using LOD = 3.3 SD/slope (ICH, 1996).

3. Results and discussion

3.1. Phase purity of the polymorphs

The phase purity of the starting polymorphs was confirmed with
various analytical techniques including powder X-ray diffraction,
infrared and Raman spectroscopy as well as differential scanning
calorimetry (DSC) and hot-stage microscopy. The overlay of the
experimental and calculated powder X-ray diffractograms of the

three d-mannitol modifications in Fig. 2 demonstrates the phase
identity and purity, as each modification shows characteristic and
unique peak positions. The theoretical PXRD patterns, calculated
from the single crystal structure data (Berman et al., 1968; Fronczek
et al., 2003) using the PowderCell v. 2.4 software are in good agree-
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Fig. 4. Difference spectra between the mods. I◦–II, I◦–III and II–III.
ig. 2. Overlay of experimental versus calculated PXRD patterns (PowderCell v. 2.4)
f the threed-mannitol modifications. Experimental patterns were recorded at room
emperature.

ent with the respective experimental patterns. Furthermore, a
ietveld refinement was performed, confirming a high phase purity

f the starting materials.

Even though the d-mannitol samples were ground with mortar
nd pestle prior to the measurements, one can identify intensity
ifferences between the experimental and calculated powder X-ray

Fig. 3. FT-Raman spectra of d-mannitol m
diffraction patterns that arise from preferred orientation (Jenkins
and Snyder, 1996), which is hard to avoid for the acicular manni-
tol crystals. This problem has been previously described by other
authors for d-mannitol (Campbell Roberts et al., 2002b) and makes
spectroscopic methods such as Raman spectroscopy more advan-

tageous compared to PXRD.

ods. I◦ , II and III used in this study.
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Table 2
Actual contents (%) of the three d-mannitol polymorphs and values predicted by the multivariate methods. The spectra were preprocessed by calculating the first derivative
and Orthogonal Signal Correction (OSC).

Mod. I◦ Mod. II Mod. III

Actual content (%) Predicted content (%) by Actual content (%) Predicted content (%) by Actual content (%) Predicted content (%) by

PLS ANN PLS ANN PLS ANN

0.5 0.7 0.9 0 0.0 0.6 0 0.3 0.6
1 1.1 1.4 0.5 0.9 1.0 0.5 0.7 1.0
1.5 1.7 1.5 0.5 0.5 0.9 1 1.8 1.5
2 2.6 2.6 1.5 1.3 1.4 2 2.0 1.9
6 5.4 5.6 6 6.2 5.7 8 8.1 8.1
8 8.0 8.1 12 12.0 12.1 12 11.4 11.9

24 23.4 24.2 24 24.2 23.9 32 32.1 32.1
32 31.5 32.0 32 31.9 31.9 32 31.7 32.2
36 36.4 36.2 36 36.3 35.9 52 52.4 51.9
76 76.6 75.9 84 84.0 83.8 88 88.4 88.7
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of principal components (PCs). Table 4 also lists the number of
PLS components and the prediction errors. Except for the model
where no preprocessing was applied, only 2 PCs were found to be
significant.
99 98.5 98.0 96
100 99.7 98.7 98

NN: artificial neural networks; PLS: partial least-square regression.

.2. Raman spectroscopy

The FT-Raman spectra of the three pured-mannitol polymorphs
re displayed in Fig. 3, and the difference spectra (mods. I◦–II, I◦–III
nd II–III) are shown in Fig. 4. The spectra are in good agreement
ith those published by Burger et al. (2000). The three modi-
cations show clear differences over almost the entire spectral
ange. The most significant differences occur within the sym-
etric and antisymmetric stretch vibrations of the R–CH2–R′ and

H(R)3 groups (3000–2850 cm−1), the out-of-phase C–C–O stretch
1150–1000 cm−1) and in-phase C–C–O stretch (900–800 cm−1)
ibrations of the primary and secondary alcohol groups. How-
ver, for a simultaneous quantification of all three modifications
here are no suitable, non-overlapping (single) peaks with a high
ntensity, which would be the prerequisite for a simple univariate
uantification method based on peak intensities or peak area. The
nivariate Raman quantification method developed by Campbell
oberts et al. (2002a) for binary mixtures of mods. I◦ and III
ould not be applicable for the ternary mixture, because the

ands used for the analysis of mod. I◦ (1037 cm−1) overlap with
ands of mod. II (1032 cm−1). Therefore multivariate models rep-
esent the most promising alternative for a successful quantitative
nalysis of the ternary polymorph mixtures with Raman spec-
roscopy.

.3. Multivariate quantification: partial least-squares (PLS)
egression and artificial neural networks (ANNs)

Two different algorithms, PLS and ANNs, were used in the
resent study. Table 2 lists the actual contents (%) of the manni-
ol modifications in the prediction subset and the values that have
een predicted with the two multivariate models (PLS and ANNs)
sing preprocessed Raman data (first derivative and orthogonal sig-
al correction), and Fig. 5 illustrates the results. The corresponding
MSEP (root-mean-squared error of prediction, %) values together
ith the linear regression parameters of observed versus predicted

oncentrations (coefficients of determination, slopes and inter-
epts) are listed in Table 3.

.3.1. Partial least-squares regression
The most important step in the development of multivariate
alibration models is the choice of a sufficient number of well
elected observations and predictor(s), the choice of the correct
egression technique (or alternative technique), a suitable pretreat-
ent of the data, and the careful validation of the model (Forina et

l., 2007). Another important point that is particularly relevant for
5.3 96.1 97 97.0 97.1
7.1 97.1 99 98.9 98.3

PLS models, is the number of latent variables. The leave-one-out
cross-validation procedure was used for calculating the number
Fig. 5. Predicted versus actual content of d-mannitol mods. I◦ , II and III in the test
data set, calculated for partial least-squares (PLS) regression and artificial neural
networks (ANNs).
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Table 3
Root-Mean-Squared Error of Prediction (RMSEP %) with the Linear Regression Parameters of Observed versus Predicted Concentrations
(coefficient of Determination, R2, Slope and Intercept). Spectra were preprocessed by calculating the first Derivative and Orthogonal Signal
Correction (OSC).

Algorithm RMSEP (%) R2 Slope Intercept

Mod. I◦

PLS 0.440 0.9999 1.002 0.041
ANN 0.510 (0.027) 0.9999 (<0.0001) 1.011 (0.020) −0.202 (0.020)

Mod. II
PLS 0.376 0.9999 1.007 −0.158
ANN 0.386 (0.008) 0.9999 (<0.0001) 1.006 (<0.001) −0.105 (0.019)

Mod. III
PLS 0.360 0.9999 1.001 −0.127
ANN 0.411 (0.008) 0.9999 (<0.0001) 1.003 (<0.001) −0.269 (0.010)

ANN: artificial neural networks; PLS: partial least-square regression.

Table 4
Comparison of the Root-Mean-Squared Error of Cross-Validation (RMSECV, %), Calibration (RMSEC, %) and Prediction (RMSEP, %) of the
differently preprocessed PLS and ANN models. For the PLS models the number of principal components (PCs) is stated.

Method PLS ANN

Preprocessing PCs RMSECV (%) RMSEC (%) RMSEP (%) RMSEP (%)

Mod. I◦

Without 4 2.817 3.068 4.187 1.558 (0.055)
First der. 2 3.687 4.063 6.830 1.148 (0.023)
OSC 2 1.270 1.524 0.875 0.950 (0.039)
First der. + OSC 2 0.545 0.426 0.440 0.510 (0.027)

Mod. II
Without 4 3.685 4.253 3.367 0.892 (0.015)
First der. 2 3.806 4.282 8.466 1.222 (0.024)
OSC 2 0.855 1.051 0.737 0.804 (0.018)
First der. + OSC 2 0.269 0.249 0.376 0.386 (0.008)

Mod. III
Without 4 1.902 2.014 3.520 1.246 (0.023)
First der. 2 2.614 3.020 5.009 1.087 (0.016)
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OSC 2 2.076
First der. + OSC 2 0.426

ANN: artificial neural networks; PLS: partial least-square regressio

To find out which kind of preprocessing gives the best results,
ifferent spectral pretreatments were applied and compared. The
MSECV, RMSEC and RMSEP for the PLS analysis and RMSEP for
he ANNs models are given in Table 4. The numbers show that the
est predictive performance was achieved by calculating the first
erivative of the spectra OSC (Wold et al., 1998). Without spec-
ral pretreatment the prediction errors (RMSEP) for the PLS models
anged from 3.4 to 4.2%. Using only the first derivative resulted
n even higher prediction errors than with the unprocessed data,

hereas the OSC preprocessing lowered the RMSEPs of the original
ata by 0.7–1.5%. However, the data show that the most effective
reprocessing is to apply OSC to the first derivative. This indicates
hat OSC is a very critical step to enhance the predictability power
f the model.

To avoid over-fitting the performance of the models was vali-
ated using an external test subset. A comparison of the RMSECV,
MSEC and RMSEP values (see Table 4) showed that over-fitting is
ot a problem for the best model, since the RMSEs (cross-validation,
alibration and prediction) are of the same magnitude. The LODs for
he best model were found to be ∼1.5% for mod. I◦ and <1% for mods.
I and III respectively.
.3.2. Artificial neural networks
In order to compare the predictive power of two algorithms (PLS

nd ANNs) the data set was also used as an input for ANNs. The ANN
odels using non-preprocessed data or data preprocessed with one

rocedure (first derivative or OSC) showed considerable prediction
2.538 1.507 0.996 (0.030)
0.452 0.360 0.411 (0.008)

t der.: first derivative; OSC: orthogonal signal correction.

errors of 0.8–1.6% (see Table 4). Unlike the PLS model without pre-
treatment the first derivative of the spectra alone did not result
in higher prediction errors. Similar to the PLS model, the lowest
prediction errors were obtained by a combination of the two pre-
processing techniques before calculating the ANNs. However, the
impact of OSC on the performance of the ANN models is lower than
for the PLS models.

The PLS and ANN models allow a satisfactory prediction of low
as well as high ratios of each polymorph in the ternary mixtures
(see Table 2). The RMSEP values (Tables 3 and 4) obtained for the
best model (first derivative plus OSC) indicate that the two multi-
variate methods yield comparable results. Since the less complex
PLS model gives even slightly lower error values it is obvious that
this method is more favorable.

4. Conclusions

The study demonstrated that PLS and ANNs of Raman spec-
troscopic data provide sensitive methods for the simultaneous
quantification of ternary polymorphic d-mannitol powder mix-
tures, with RMSEPs ∼0.5% and below for each polymorph and
quantification method.
Spectral preprocessing by calculating the first derivative fol-
lowed by OSC improved the predictive performance of the models
significantly. With the PLS model a better enhancement was
obtained by applying OSC, which is most likely due to the fact that
OSC is a PLS based preprocessing technique. Furthermore, the com-
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Yu, L., Milton, N., Groleau, E.G., Mishra, D.S., Vansickle, R.E., 1999. Existence of a
6 D.E. Braun et al. / International Jou

arison between PLS and ANNs showed that both algorithms were
apable of correctly predicting low as well as high concentrations of
ach d-mannitol polymorph in the presence of the other two mod-
fications. Apart from its slightly better performance compared to
he ANNs PLS is also the simpler and faster (computation time)

ethod. Moreover, a big advantage is that, unlike ANNs, there is no
ependence of the convergence on the initial weights. Thus, several
raining and testing cycles are necessary if ANNs are used.

This study also demonstrated that the predictability of a data set
epends not only on the selection of the right algorithms, but also
n the appropriate preprocessing, which needs to be evaluated for
he individual experimental method and also the algorithm itself.
NNs are the quantification methods of choice if no preprocessing

s carried out. Our work shows that PLS becomes the best model
fter the observations (variables) have been subjected to suitable
retreatment. Since it is wise to choose not only the best but also the
implest method, we regard PLS as the first choice for quantifying
olymorphic d-mannitol powder mixtures. However, if a system
ecomes more complex, e.g. when a higher number of crystal forms
eeds to be quantified, this preference may change.
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